Learning rules for a fuzzy inference model*
نویسندگان
چکیده
" The problem of learning rules for a fuzzy inference model directly from empirical observations, without resorting to assessments from experts is considered. We develop a method that builds uncertain rules from a set of examples. These rules match the following pattern: If X is A then Y is B is [a,/3], where A and B are fuzzy sets representing fuzzy restrictions on the variables X and Y; a and/3 are real numbers expressing lower and upper degrees of certainty in the truth of the rule. The method is based on the minimization of a distance measure between the real output associated to a given input and the output predicted by the inference model using a parameterized version of the same rule to be learnt. Our approach is computationally efficient in running time as well as in storage requirements. Moreover, it can be used in both training (batch-processing) and adaptation (iterative-processing) modes of learning.
منابع مشابه
Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملA Controller Design with ANFIS Architecture Attendant Learning Ability for SSSC-Based Damping Controller Applied in Single Machine Infinite Bus System
Static Synchronous Series Compensator (SSSC) is a series compensating Flexible AC Transmission System (FACTS) controller for maintaining to the power flow control on a transmission line by injecting a voltage in quadrature with the line current and in series mode with the line. In this work, an Adaptive Network-based Fuzzy Inference System controller (ANFISC) has been proposed for controlling o...
متن کاملAdaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملDynamic Evolving Neuro-Fuzzy Inference System (DENFIS): On-line learning and Application for Time-Series Prediction
This paper introduces a new type of fuzzy inference systems, denoted as DENFIS (dynamic evolving neural-fuzzy system), for adaptive on-line learning, and its application for dynamic time series prediction. DENFIS evolve through incremental, hybrid (supervised/unsupervised), learning and accommodate new input data, including new features, new classes, etc. through local element tuning. New fuzzy...
متن کاملA Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کامل